The Comparison of SOM and K-means for Text Clustering

نویسندگان

  • Yiheng Chen
  • Bing Qin
  • Ting Liu
  • Yuanchao Liu
  • Sheng Li
چکیده

SOM and k-means are two classical methods for text clustering. In this paper some experiments have been done to compare their performances. The sample data used is 420 articles which come from different topics. K-means method is simple and easy to implement; the structure of SOM is relatively complex, but the clustering results are more visual and easy to comprehend. The comparison results also show that k-means is sensitive to initiative distribution, whereas the overall clustering performance of SOM is better than that of k-means, and it also performs well for detection of noisy documents and topology preservation, thus make it more suitable for some applications such as navigation of document collection, multi-document summarization and etc. whereas the clustering results of SOM is sensitive to output layer topology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing k-means clusters on parallel Persian-English corpus

This paper compares clusters of aligned Persian and English texts obtained from k-means method. Text clustering has many applications in various fields of natural language processing. So far, much English documents clustering research has been accomplished. Now this question arises, are the results of them extendable to other languages? Since the goal of document clustering is grouping of docum...

متن کامل

Computational Intelligence Methods for Clustering of Sense Tagged Nepali Documents

This paper presents a method using hybridization of self organizing map (SOM ), particle swarm optimization(PSO) and k-means clustering algorithm for document clustering. Document representation is an important step for clustering purposes. The common way of represent a text is bag of words approach. This approach is simple but has two drawbacks viz. synonymy and polysemy which arise because of...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

A New Text Clustering Algorithm Based on Improved K_means

Text clustering is one of the difficult and hot research fields in the internet search engine research. A new text clustering algorithm is presented based on Kmeans and Self-Organizing Model (SOM). Firstly, texts are preprocessed to satisfy succeed process requirement. Secondly, the paper improves selection of initial cluster centers and cluster seed selection methods of K-means to improve the ...

متن کامل

Prediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods

This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer and Information Science

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010